Hilbert space of wormholes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert space of wormholes.

Wormhole boundary conditions for the Wheeler-DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert-space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler-...

متن کامل

Hilbert Space of Wormholes Typeset Using Revt E X

Wormhole boundary conditions for the Wheeler–DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler–...

متن کامل

Wormholes as a basis for the Hilbert space in Lorentzian gravity.

We carry out to completion the quantization of a Friedmann-Robertson-Walker model provided with a conformal scalar field, and of a Kantowski-Sachs spacetime minimally coupled to a massless scalar field. We prove that the Hilbert space determined by the reality conditions that correspond to Lorentzian gravity admits a basis of wormhole wave functions. This result implies that the vector space sp...

متن کامل

Clustering via Hilbert space

We discuss novel clustering methods that are based on mapping data points to a Hilbert space by means of a Gaussian kernel. The *rst method, support vector clustering (SVC), searches for the smallest sphere enclosing data images in Hilbert space. The second, quantum clustering (QC), searches for the minima of a potential function de*ned in such a Hilbert space. In SVC, the minimal sphere, when ...

متن کامل

Into a Hilbert Space

Nowak [N], improving a theorem due to A. N. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu [DGLY], gave a characterization of coarse embeddability of general metric spaces into a Hilbert space using a result of Schoenberg on negative definite kernels. He used this characterization to show that the spaces Lp(μ) coarsely embed into a Hilbert space for p < 2. In this article, we show that lp does ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 1993

ISSN: 0556-2821

DOI: 10.1103/physrevd.48.1710